EssayGhost Assignment代写,Essay代写,网课代修,Quiz代考

EssayGhost-Essay代写,作业代写,网课代修代上,cs代写代考

一站式网课代修,论文代写

高质量的Assignment代写、Paper代写、Report代写服务

+8617853885483
网课代修代上,cs代写代考
数据结构代写
您的位置: 主页 > 编程案例 > 数据结构代写 >
代做数据结构:python panda代写 数据分析 数据挖掘代写 Course Project Part III – 数据结构代做
发布时间:2021-07-25 14:03:41浏览次数:
python panda代写Load the market data information from all the symbols above using yahoo information. You will use the function DataReader from the module pandas_datareader. You will not load the information from Southwest the same way. It will be stored into a dictionary indexed by the name of the symbols. It will represented by this following dictionary. all_data[LIST_OF_SYMBOLS] example: all_data[“LFL”]  print (all_data[ AAL ].head(2))Open High Low Close Volume Adj Close Date 2014-06-02 40.000000 41.25 40.000000 41.220001 9902100 40.2136632014-06-03 41.130001 42.09 41.110001 41.439999 9456200 40.428290  1 Task 2 (5pts)Load the market data from Southwest Airlines from the CSV file ‘LUV.csv’.Store this data into the variable luvdf.The problem of reading a csv file is that your dates have a string type. You need to cast this string into a DateIndex for the dataframe you will be using in the rest of your code.print(luvdf.head(2))Open High Low Close Volume Adj CloseDate2014-05-01 19.18 19.219999 18.450001 18.580000 603800 18.1237252014-05-02 18.66 19.299999 18.629999 18.969999 556600 18.504147Hint: read_csv from the panda library has different options that you can use to cast a date (string type) to a dateindex. I am suggesting you to check the argument of this function: parses_date and index_col.Task 3 (5pts)As you certainly noticed, the starting date of luvdf is different from the starting date of the other symbols.In this task you will add a key to the dictionary all_data that you will call ‘LUV’ and you will assign the dates of luvf corresponding to the same interval as the other symbols.Hint: you will need to use: luvdf[‘DATESTART’:’DATEEND’]Task 4 (5pts)You create a dataframe price containing only the prices “Adj Close” of all the symbols. print(price.head(2))AAL ALK AVH CEA CPA DAL Date2014-06-02 40.213663 48.630584 14.395138 15.058780 130.26729839.7192382014-06-03 40.428290 48.543110 14.227547 15.078451 129.97489940.089445GOL  LFL LUV UAL VLRS WTI ZNHDate2014-06-02 56.200002 14.16 14.073248 46.700001 8.57 14.073248 13.8837912014-06-03 55.700002 14.19 13.955398 47.509998 8.43 13.955398 14.0935732You create a dataframe volume containing only the volume of all the symbols.Task 5 (5pts)Using the function pct_change(), you will calculate the daily return for each of the symbols. You will store the results into the variable daily_return. This return will be calculated out of the Adj Price.Now without using pct_change(), you will use shift(1), you will calculate the daily return. You will compare these results with the the results returning by pct_change.Task 6 (5pts)Create the scatter plot between the return of AAL and the Volume. Do you see any correlation?Create the scatter plot between the return of LUV and the Volume. Do you see any correlation?Task 7 (5pts)Print the pair-correlation between all the symbols.You will also print a graphic between the correlation of all the symbols:pd.scatter_matrix(DataFrameToSpecify, diagonal= kde , figsize=(10, 10));Task 8 (5pts)Using the function rolling_mean from panda, calculate the rolling average for 5 days of all the symbols. You will store this new column into the all_data[SYMBOL]. This symbol will be called MovingAverage.Task 9 (5pts)You will need to get rid of the symbol WTI being the crude oil.Let’s create a DataFrame noluv containing the mean of the return of all the symbols excep LUV for each day. You will need to use the command drop(‘LUV’) to remove LUV which will not be a part of the moving average.Let’s create a second DataFrame onlyluv containing the return of LUV.Create another dataframe containing the aggregation of noluv and onlyluv.You will use this command.tt=pd.DataFrame({ No.LUV  : noluv , LUV  : onlyluv})You will plot the daily return for the whole period.tt.plot() With this chart, it is not possible to say anything.Try to make appear a trend between the movement of LUV and the rest of the Airline industry.Use different value of the moving average to see if you can have a clearer way of seeing the relation between LUV and the rest of the Airline industry.Hint: you can just use moving average associated to thepd.rolling_mean(tt,X).plot()Replace X by the value you prefer. [you may find a lag of LUV].Task 10 (5pts)Draw the graphic representing the expected returns with the risk.Expected returns being the mean of the daily return and the risk being the standard deviation of the daily returns.You will use daily_return.mean() for the expected return and daily_return.std() for the risk.Task 11 (10pts)You will study the correlation between the average return of the airline industry with the price of crude oil WTI.a) plot the scatter plot of the average of the daily return of the whole airline industry and the price of the Adjusted Close of WTI. b) plot the scatter plot of the average of the daily return of the whole airline industry and the daily return of the Adjusted Close of WTI. c) using the function lm = smf.ols(formula=“????”, data=…).fit()Find the parameter of the linear regressiond) plot the least square line

所有的编程代写范围:essayghost为美国、加拿大、英国、澳洲的留学生提供C语言代写、代写C语言、C语言代做、代做C语言、数据库代写、代写数据库、数据库代做、代做数据库、Web作业代写、代写Web作业、Web作业代做、代做Web作业、Java代写、代写Java、Java代做、代做Java、Python代写、代写Python、Python代做、代做Python、C/C++代写、代写C/C++、C/C++代做、代做C/C++、数据结构代写、代写数据结构、数据结构代做、代做数据结构等留学生编程作业代写服务。